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Benjamin (1963) introduced the idea that a given ‘primary’ swirling flow, with 
cylindrical stream surfaces, may have associated with it ‘conjugate flows ’, also 
swirling and cylindrical, which in a certain sense are equivalent to the primary 
one. He deduced that, in cases where such conjugate flows exist and where the 
primary flow cannot support standing waves of small amplitude, the conjugate 
flow nearest the primary one (u) can support such waves, and ( 6 )  has a ‘flow force ’ 
greater than that of the primary flow. I n  the present paper these two results are 
proved rigorously by a method which differs from Benjamin’s. 

1. Introduction 
This paper is concerned with certain assertions made by Benjamin (1962) in 

his bold and important work on the phenomenon of vortex breakdown. Benjamin 
obtained his results by a mixture of physical reasoning, plausible argument, and 
appeal to advanced theorems in the calculus of variations. However, certain 
mathematical aspects of this work are open to criticism.? It would not be profit- 
able to dwell on such criticism, because the arguments in Benjamin’s paper are 
plausible enough and the results in question are correct in all essentials, but it 
does seem worth while to derive these results by a different method, which makes 
no appeal to the calculus of variations. (The set of functions admitted into com- 
petition by the variational approach is in fact much larger than is necessary for 
the task a t  hand.) We begin by sketching the essential ideas of the theory. 

Let ( r ,  9, x )  be cylindrical co-ordinates and (u, w, w) the corresponding compon- 
ents of fluid velocity. We write $r2 = y, and consider the steady axisymmetric 
swirling flow of an inviscid fluid, of uniform density p,  in a pipe of radius (2a)a 
and of infinite length in the x-direction. The stream function Y is defined by 
Y, = w, Ys = - TU, and by Y = 0 on y = 0. 

Given that far upstream there is a ‘primary’ cylindrical flow A ,  with velocity 

t For example, Benjamin calculated the difference in flow force of two conjugate flows 
by an application of Weierstrass’s theorem (Bolza 1961) to what in our notation becomes 
the curve h = A_, in the (y. $)-plane of figure 2 (of the present paper). Now Weierstrass’s 
theorem is applicable only to curves in a certain neighbourhood of the curve A = A,; this 
neighbourhood may or may not extend to the curve A = It does so for the extrenials 
drawn in Benjamin’s paper and in figure 2 ;  but, if in the (y, A)-plane of figure 2 there occurs 
a further curve $,, = 0, say closed or c -shaped, lying in the region bounded by y = 0, a, 
by h = A-l, A, and by the curve $ A  = 0 shown, and such that its image in the (y, $)-plane 
intersects the part of A = A_, shown broken, then Benjamin’s result [(4.13) of his paper] 
is meaningless, for the integrand is many-valued. 
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(0, V(y), W ( y ) )  and with pressure po on the axis, we denote its stream function 
by $A(y) ,  its total-head pressure by pH,(y), and its circulation by (8n21A(y))t. 
A total-head function H($)  and a circulation function I ($ )  are then defined 
parametrically by 

I ?h = q ~ ( 7 )  EZ 1‘ w ( t ) d t ,  
0 

I I = IA(7) = 7V2(7), 

0 6 7 < a ,  0 < $ 6 b, b =/ouW(t)dt,  

where r is a parameter, and where it is assumed that W > 0 on the closed interval 
[0, a]. Then (see, for example, Squire 1956 or Benjamin 1962) possible steady 
flo~vs in the pipe are governed by 

Yyu + 4y-1Yz, = H’(Y) - +y-lI’(Y), (1.2a) 

with Y(0, Z )  = 0, Y(a, Z )  = b, ( 1 . 2 b )  

dashes denoting derivatives of functions of one variable. 
Obviously $A(y) satisfies (1.2); Benjamin points out that other functions @(y) 

may also satisfy (1.2), and thus represent cylindrical flows which are said to be 
conjugate to A .  He gives examples of such conjugate flows; moreover, it  is well 
known that non-linear boundary-value problems like (1.2), with Yzz G 0, often 
have more than one solution. 

We suppose throughout this paper that the given primary flow A cannot sup- 
port standing waves of small amplitude; in other words, we assume that if we 
substitute 

‘I’(y, Z )  = + seiaes(y) 

into (1.2),  to obtain upon linearization with respect to E 

syy - (By-1a2 + H”($,) - gy-lr”(q,)) s = 0 ,  (1.3a) 

with s(0) = 0, s(a) = 0, ( 1 . 3 b )  

then the linear eigenvalue problem (1.3) has no non-negative eigenvalues a2. Let 
B denote the conjugate flow ‘nearest’ A in a sense which will presently be made 
precise. The following two ideas are crucial to Benjamin’s theory of vortex 
breakdown. 

(i) The conjugate flow B can support infinitesimal standing waves; that is, if 
in (1.3) we replace $A by ?hB, a t  least one eigenvalue a2 3 0 exists. 

(ii) The flow force 

is greater for B than for A .  
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Benjamin argues that, if SB - SA is small, the addition of waves to the cylin- 
drical flow B can reduce its flow force to a value near that of A ,  and that this 
makes possible a transition, resembling an undular hydraulic jump, from flow A 
to a combination of flow B and standing waves. On the other hand, if S, - S, is 
not small, a strong transition, resembling a dissipative hydraulic jump, can 
reduce H sufficiently to change flow A into flow B, with or without waves. 

- - 
5 

FIGURE 1. Notation for the curve I?. Arrows along the arcs I?, point in the 
direction of h increasing. 

The present paper is concerned only with results like (i) and (ii), and not with 
their interpretation. To compare the stream functions $A(y),  $,(y), . . . of the 
primary and conjugate flows, we embed them in a continuous one-parameter 
family consisting of all solutions $(y, A)  of ( 1 . 2 ~ )  which are independent of z 
and vanish on the axis y = 0; here h is a parameter which identifies different 
solutions and represents the velocity on the axis: 

= $ J O ,  4. 
The primary and conjugate flows are characterized by particular values A, of A. 
It turns out that both the results above depend on the nature of a certain 
curve I? (figure 1) which is defined parametrically in (say) a (<, ?)-plane by 

5 = 9% 4 - b, 'I = $&, 4. 
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The zeros A, of ( ( A )  are the values of h for $,, $B, . . . . The curve r is simple (i.e. 
it cannot cross itself) and smooth. Let the unit tangent vector to F, in the direc- 
tion of h increasing, have components (cos p, - sin p) ; we can define p(A) uniquely 
by specifying that ]v(h,)l < $7 for the primary flow = $(y, A,), and by requir- 
ing p to be continuous. It will be shown that angles p d - &rare impossible; that 
conjugate flows $(y, A,) cannot support standing waves if p(A,) < in; and that 
they can support such waves if p(A,) 2 in-. Now, if A, is the zero of [ ( A )  nearest 
A,, and if h, > h,, then in figure 1 we must have (since p < - in is impossible) 

7 ( U  < 7@,) and v(A1) 2 

Hence flow B, with stream function $(y, A,), can support waves. 
Turning to the flow force, we have by (1.4) 

where rn is the arc A, < h < A,+, of I?. Hence, if A, characterizes flow B, the 
difference S, - S, in flow force is 27r times the area between I?, and the 7-axis; 
this is positive because ?(A,) < q(A,,). 

2. The function $(y, A) and its partial derivatives 
We consider the function $(y, A )  defined by the initial-value problemt 

$cyu = H’($)  - iY-lT($) - f ( y t  $1 (say), ( 2 . l a )  

with $(O) = 0, $,(O) = A. ( 3 . l b )  

The existence and uniqueness of this function for 0 < y < u and for all bounded 
real values of A are not obvious a priori because f (y, $) has been defined only for 
0 6 $ 6 b, and because f is singular on y = 0. We assume$ that in (1 .1)  the given 
functions TY and V 2  have continuous first and second derivatives on [O, a ] ;  that 
W > 0 there; and that V2(y)/2y (which is the square of the angular velocity) has 
a continuous first derivative at y = 0. Then it is easy suitably to extend the 
definition off to all values of $, and to prove the existence of a unique $(y, A) 011 

any rectangle 

where c and A are arbitrary positive finite numbers. This is done in the appendix. 

t The dependence of $ on h will not be displayed where h is held fixed throughout a 
calculation. 
1 Derivatives at the left and right end-points of closed intervals are, of course, right- 

hand and left-hand derivatives, respectively. Any fiinction of forni F(?y)/y is to be defined 
at  y = 0 by its limit2ing value. 

R: O ~ Y ~ C ,  - A < h < A ,  
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Now in general $(a, A )  does not vary monotonically with A (figure 2). Hence in 
many cases there exists a finite or infinite sequence 

{A,} 3 . . ., A-1, A,, A,, . . . (A, < A,+l), 
such that $(%A,) = b, ( 2 . 2 )  

and the functions $(y,  A,) then represent the primary flow A and its conjugates. 
We choose 

A, = W(O),  so that $(Y,h,) = $A(Y). 

I , 

U Y a 2’ 

FIGURE 2.  A mapping of the (y, &-plane on to the (y,  plane by the function @(y, A). 
Curves $A = 0 correspond to folds bounding the various sheets of the (y, $)-plane. 

Of course, only values A, d A, (or only values A, 
function f. Moreover, only those conjugate flows satisfying 

A,) may exist for a particular 

0 d $(y,A,) < b for 0 6 y < a, ( 2 . 3 )  

are physically significant, since the others depend on the arbitrary ext,ension of 
f ( y ,  $). However, while we may be able to see in particular cases whether (2.3) is 
satisfied for a given A,, there seems to be no way of establishing this in the general 
theory. (Of course, (3.3) cannot be satisfied if A, < 0.) 

If the A, have an accumulation point (limit point), there are complications: 
these could be handled, but the effort does not seem worth while. If {A,} = A, 
alone, there is nothing to discuss. We consider only primary flows for which the 
A, are isolated and a t  least one A, differs from A,. 

Since we are interested in the variation with A of wave-carrying capacity and 
of flow force, the derivative = ~ ( y ,  A )  is of importance. Formally differenti- 
ating (2.1), we obtain 

with x (0 )  = 0, XJO) = 1, ( 2 . 4 b )  

and it can be shown (see the appendix) that on the rectangle R the solution of the 
problem (2.4) exists, is unique, is continuous with respect to A and twice continu- 
ously differentiable with respect to y ,  and is indeed equal to $A. 

We now assign to each value of A an integer which will be shown to describe the 
standing waves which the flow associated with $(y, A )  can support. (It is helpful 
to regard each function $(y, A) ,  with A fixed, as representing a flow, even though 
for A + A, the flux $(a, A )  differs from that of the primary flow.) 

x u u  -&(Y, $(Y> A ) )  x = 0 ( 2 . 4 a )  
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Let the A-derivative A)  have m zeros (m = 0,1,2, ...) on the half-open y- 
interval (0, a] ,  for a given value of A;  then $(y, A )  i s  said to be of type m, and we write 
T(A) = m. 

Figure 3 illustrates this definition. To grasp its significance, consider the follow- 
ing initial-value problem, which is closely related to (1.3) and (2.4). 

syy - {k-la2+f& $(Y) 4 ) ) s  = 0 ( 2 . 5 ~ )  
with s(0)  = 0) s,(O) = 1. (2.5b) 

\}T=l 
J 

FIGURE 3. Curves of @A(y, A) which illustrate the definition of type. The ordinate and slope 
at  y = a are e ( h )  and ~ ' ( h ) ,  respectively. 

Let yr(a2 ,h) ,  where r = 1,2, ..., denote the rth positive zero of s(y,aZ,h), such 
that yr < yr+.fl. The existence proof for (2.4) also covers (2 .5 ) ,  since both equations 
have the same type of singularity a t  y = 0, and it follows from the usual argu- 
ments (e.g. Burkill 1956; Coddington & Levinson 1955) that each yr is a continu- 
ous increasing function of a2 and continuous with respect to A. The definition of 
type m B 1 states that 

By increasing a2 we increase each yr; hence there exists an eigenvalue a2 2 0 
such that ym(a2, A)  = a [and then s ( a )  = 0, as required in (1.3)]. Accordingly, i f  $ 
is of type 0, no standing waves are possible. If $ i s  of type m B 1, the corresponding 
flow can support standing waves, for the longest of which (associated with the smallest 
eigenvalue 012 > 0) the amplitude function s(y) has m zeros on (0, a].  

Our definition of type 0 and type m 2 1 corresponds to Benjamin's definition of 
supercritical and subcritical, respectively, unless yl(O, A )  = a. In  that case $ is 
of type 1, but Benjamin calls it critical. 

y,(O,A) 6 a and Y ? ~ + ~ ( ~ , A )  > a. (2.6) 

3. The curve I? 
The curve I? is defined parametrically by 

!5 = $.(a, 4 - b, 7 = +&, 4, 
and may be described as follows. 

(i) The curve is simple (it cannot cross itself). For if we had 

$(a, 4 = $(a, p) and $&> 4 = $Ja,  p) with A $: p, 

$(Y, 4 =+ $(Y,P)  for A =k p 

then by the ordinary uniqueness theorem of differential equations we would have 
$(y, A)  = $(y ,p )  on every y-interval [E, a]  ( E  > 0). But (2.1) shows that 

and for sufficiently small positive values of y. 
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(ii) The curve i s  smooth: that is ,  the functions [ (A )  and y (A)  have continuous 
and kAY was noted derivatives [’ and 7’ such that c2 + f 2  + 0. The continuity of 

after (2.4). If we had 
$*(a,A) = 0 and ?,hAy(a,A) = 0 

for some particular value of A, then we would have $A = 0 on every y-interval 
[e, a] (e > 0). But (2.4) shows that $A + 0 for sufficiently small positive values 

(iii) If $(y,  A,l is  of even type, with [’(A,) =i= 0, the open arc Pn: A, < A < A,+l 
lies in [ < 0. By the definition of A,, and because even type 

of y.  

lies in [ > 0 and 
implies that $A(a, A )  2 0, we have 

E(A,) = 0 and [’(A,) = $A(u,A,) > 0. 

Hence [ > 0 for A - A, > 0 and sufficiently small. If we had [ ( A )  = 0 for some A 
on Fn this would contradict the definition of An+l. 

(iv) We define the angle g,(A) by 

cosg, = c/([’2+7‘2)*, sing, = -7’ / (c2+f2)*,  (3.2) 

by requiring g, to be continuous [which is possible by (ii)], and by specifying (since 
the primary flow has type 0, so that (’(A,) > 0 )  that Ig,(A,)l < kn-. Then 

1 (3.3) 
$(y,  A )  i s  of type m, that is  T(A)  = m, i f  and only if 

(nz - 3) 7r < g,(A) < (m + 4) n-. 

To prove this statement, we first observe that it is true a t  A,. Moreover, if 
T ( p )  + T ( v ) ,  with p < v, then $A(a, A )  must vanish somewhere on [p, v] because 
of the continuity of the zeros y,(A) of $A(y,A); that is, [’ = 0 and cosg, = 0 
somewhere on [p, v]. Consider now the behaviour of T(A) as A increases or de- 
creases from A, and passes through zeros of c(A). It is clear (see figure 3) that 
where T is even we have c 2 0, and where T is odd we have [’ < 0;  also that 
where T changes from 2p to 2p + 1 or from 2p + 1 to 2p ( p  denoting any integer 
3 0 )  we have $Ay(a, A )  < 0,  that is ?‘(A) < 0, and where T changes from 2p + 1 
to Zp + 2 or from 2p + 2 to 2p + 1 we have 7’ > 0. Hence for isolated zeros of 
[’(A) across which [ ’ ( A )  changes sign, only the four changes of type shown in 
figure 4 are possible. For these T increases or decreases according as p increases 
or decreases through an odd multiple of hn-, the larger type being always assigned 
a t  the critical value of A. 

This does not prove (3.3) because c(A) may have other kinds of zero.? Accord- 
ingly let A, denote any zero of [ ’ ( A )  on [A,, 00) and assume for definiteness that 
T(h,) = 2p+ 1,  so that 

Yzp+1(A*) = a and 7’ (A*)  = $ A & A * )  < 0. 

By the continuity of $Ay, there exists a number 6 > 0 such that on the closed 
interval I,: [A, - 6, A, + S] we have 

7’ < 0, Y 2 P  < a, Y2p+2 > a, 

t For example, if A, is an accumulation point of zeros of  e ( A )  (which here implies that 
A, itself is a zero) there may exist sequences (A<k))  converging to A, from below such that 
!Z’(A(*)) does not tend to any limit as k t CE and A,,, 1. A,. 
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and T = 2p wherever > 0, 
(3.4) T = 2p + 1 wherever c’ < 0. 

Assume that the rule (3.3) holds at  A, - 6; since by (3.4) the type there is either 
2p or 2p-t 1 ,  we have 

Then, since 7’ < 0 (sing, > 0) on I,, and since 9 is continuous, 

(2p - i )n -  < v(A*-6) < (Zp+$)n-. 

Zpn- < g,(A) < (2p+ 1 )  7~ on 18. 

FIGURE 4. Local forms of the curve I’ for changes of the type T(h). Arrows point in the 
direction of h increasing. 

Hence 

on I,. (3.5) 

From (3.4) and (3.5) we observe that, if the rule (3.3) holds on [A,, A, - 61, it holds 
on [A,, A, + 61. Since it holds in a neighbourhood of A,, it  may be extended in this 
way to any bounded value of A. 

1 6’ > 0 (cos g, > 0) 

g’ < 0 wherever (Zp+&)n- < q j  < (2p+l)n- ,  

wherever 2pn- < y < (2p + 4) n-, 

(v) Only angles g,(A) > - 4, are possible. For, if tp J. - in-, then in the limit 

7+kA(a, A)  = 0, 7+kA > 0 for 0 < y < a,  and A )  > 0. 

N 
This is impossible. 

We can now state our principal results. If A-,exists, consider I?-,: A_, < A < A,, 
which lies in c < 0 by (iii); if A, exists, consider ?,: A, < A < A,, which lies in 
5 > 0 by (iii). Since g, > - in-, it is intuitively obvious from figure 1 that 

I (3.6) 
for j = k 1,  &r < p(Aj) < #n-, 
with 7(&) > ?(A,) and/or ?(A,) > ?(U 

and this can be proved (see the appendix). Hence f o r j  = & 1, the conjugate stream 
function @(y, hi) i s  of type 1 unless g,(Aj) = #m, when it i s  of type 2 ;  in either case th.e 
corresponding $ow can support waves. Moreover, by  (1.5) we have S(Aj) > S(A,). 
Note that in these respects the (possibly tortuous) arc I?, is equivalent to the un- 
complicated one of figure 4(a ) ,  while I?.-, corresponds to the arc of figure 4(d) .  
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If $(y, A,) is of type m 2 1 and if ( ' (Am) + 0 there are four possibilities for I?,, 
according to whether m is even or odd and whether q~(h,+,) < y(A,). They corres- 
pond to the four cases in figure 4, and in each case the flow force increases when 
the type increases. 

A comment on the possibility ('(A,) = 0, which represents a type of local 
linearity, may be appropriate. If f(y, $) is linear in $, so that (2.1 a) becomes 

$ 1/1/ -{H"-&y-lI"}$ = H'(O), H" = const., I" = const., 

and if the corresponding problem (1.3) has an eigenvalue a2 = 0, then conjugate 
solutions result from the addition to $A of eigensolutions of arbitrary amplitude, 
and the curve P degenerates to the ?-axis. This situation has been excluded from 
the present paper (both by our assumption that $A has type 0, and by our 
assumption that the A, are isolated), but it is simulated locally, for small values 
of h - A,, if g'(A,) = 0. Then solutions 

$(Y, A, + 4 = $(Y, A,) + E$A(Y, A,) + o ( 4 ,  
in which 
arbitrary (small) values of 8. 

satisfies a linear equation, are conjugate within an error of o(c) for 

4. A further property of the conjugate stream functions $(y,A,) and 

Assume that A, exists and let $(y,A,) = $I(y). In  this section we make a 

$AY) > $A(Y) (0  < Y < a) ,  (4 . la)  

$I,(o) > $Av(O), < $ A Y ( ~ ) -  (4.lb, c) 

Similar inequalities, but in the opposite direction, hold for $(y, A-,) relative to 

Benjamin (1962) used the property that $A(y) and 1Crg(y) intersect only at  
y = 0, a as one of several definitions of the conjugate flow B 'adjacent' to A ;  
equivalence of these definitions was not proved. Our definition of $(y, A,) implies 
(4 . la) ,  but it is not obvious whether the inequality @(y, A,) > $(y,A,) on (0,a)  
implies A, = A, uniquely in all cases. 

Let $(y,A)-$(y,h,) = $(y,A). Because $(y,A,) is of type 0, we have 
$A(y,Ao) > 0 on (O,a]; also $l/A(O,A) = 1. Hence t,here exists a number A,  > A, 
such that 

Also, by (2.1 b )  and 8 3 (iii), 

$(Y 9 A-1) 

comparison with $(y, A,) = $A(y) which shows that 

$A* 

$(Y,A,) > 0 (0 < Y < a). (4.2) 

and 

The function $(y, A )  is continuously differentiable on the rectangle R, and hence 
also on 

Assume that (4.1 a)  is false, so that there exists at  least one pointy" on (0, a) such 
that 

R,: 0 < y < a ,  A, < A, 6 h 6 A,. 

(4.5) $(y",h,) < 0. 
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We now prove a result made plausible by sketching the graph of q5 versus y for 
various values of A ;  namely, that (4.2) to (4.5) imply the existence on R, of a t  
least one point @,A) a t  which q5 = q5u = 0. But this is impossible by the unique- 
ness argument used in $ 3  (i); hence (4.5) is false, and (4.1 a )  is true. 

By (4.3) there exists a number yo > 0 such that on R, 

Q 3 &(A, -A, )y  for y < yo. 
Define on [A,, A,], 

m(h) = min{@(y,h); yo 6 y < a). 

Then m(h) is continuous, with m(A,) > 0 and m.(h,) < 0; hence there exists 2 
such that m(4) = 0, and Q > yo such that 

Q(Q, 4) = m(4) = 0. 

It remains to show that Q < a,  for then the minimum occurs a t  an interior point 
of [yo,a] and q5g = 0 there. If m(A,) < 0, then 2 < A, and 9 < a by (4.4). If 
m(A,) = 0, then equality must hold in (4.5), and we can take Q = y" < a. 

The result (4 . lb)  follows from (4.3). As for ( 4 . 1 ~ ) :  equality there would make 
q5 = q5u = 0 a t  (a,h,), and the opposite inequality would imply (4.5). 

Appendix. Various mathematical details 
I. The function f(y, $) 

Our first task is to extend the definitions (1.1) of the functions H($)  and I ($) .  
To this end, we first extend the definitions of W ( 7 )  and V2(7)  to all (real) values 
of T in any manner which ( a )  makes W ,  V 2 ,  7 V 2  and their first and second deriva- 
tives bounded and uniformly continuous for all 7; ( b )  makes W 2 6 for some 
6 > 0 which is independent of 7; and (c) leaves V2/7 continuously differentiable 
a t  7 = 0. (We have already assumed that such conditions hold on [O,a].) For 
example, we could write, for T 6 0, 

W ( T )  = w(o) + e - 7 z { w W 1 ( 0 ) ~ + ~ W " ( ~ ) ~ z - ~ ~ 3 ) ,  

and choose the constant G sufficiently large to make W ( T )  3 W(O)/S for T < 0. 
Then HA(7) and IA(7) are defined and suitably differentiable for all values of T, 
and the relation $ = $ A ( ~ )  has a unique inverse T = r($) for all $. Since 

H ( $ )  = HA(7)? I ($)  = I A b ) ,  d/d$ = {l/W(7))(d/d7), 
the functions H($) ,  I ($)  and their first and second derivatives are bounded and 
uniformly continuous for all $. 

Consider the function 

f(y, 9) = Ii'($) - &y-lI'($) on D: 0 < y 6 c ,  -00 < $ < 00, 

where @is regarded as independent of y a t  this stage, and c is an arbitrary positive 
finite number. We define 

and note that there exists a function Z(a), independent of $ and tending to zero 
with a, such that 

clHI($ + a )  - H"($) I + &II"($ + a )  - IN($) I < Z(a). 
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This yields two fundamental inequalities: 

If&, $11 6 h’lY on D, 
If& @+a) -f&A @ ) I  < m 4 i y  on D. 

To obtain a third, we write 

@ = YO, f ( Y ,  90) = g(y,  01, 

95 

so that g ( y ,  0) = H’(0) + {yH”(yfT) - &P(yCT))dc s: 
11. T h e  initial-value problem for $(y, A )  

If we write 

so that 

the initial-value problem (2.1) for $(y, A )  becomes 

with # ( O )  = 0,  #, (O)  = A -  W ( 0 )  = ,u (say). 

$ = @AY) + #, f (Y, @A(Y) + #) -f(% $-A(Yf) = F(y7 $1, 

P ( Y , O )  = 0, W Y , # * ) - W , # ) l  6 Kl#*-#l/Y, 

#yy = RY, $ 1 2  

We apply the usual Picard scheme of successive approximation (Burkill 1956; 
Coddington & Levinson 1955) : 

#o(Y) = Puy, 

where Il is the modified Bessel function of the first kind of order one, we readily 
find by induction that on [0 ,  c] 

,~ 

The identity implied by (A 5) 

shows, in view of the bounds (A 4) and (A 6), that 0, is continuous on [0, c ] ,  and 
it then follows from (A 3) that P(y, #,(y)) is also continuous there. 

Therefore we have the usual situation: the sequences {#n}, {B’(t7#n(t))} of 
continuous functions converge uniformly on [O,c], and all the details of the 
existence and uniqueness proofs for non-singular equations follow here, without 
restriction on the range of @. 
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without identifying x with I++,, in the first instance. It is clear that, for fixed A ,  
h is continuous on [0 ,  c ] ;  in fact by (A 5 )  we have, using the bounds (A 4) and (A 6), 

The existence and uniqueness proof for (A 7) by the Picard scheme now go 
through as before, x,/y being a continuous function of y. Moreover, it is straight- 
forward to adapt the relevant theorem of the ordinary theory (Coddington & 
Levinson 1955, p. 35) to show that I++,, equals x and is continuous with respect to A. 

Let 

IV. Proof of the result (3.6) 

c: t = g t ) ,  y = y ( t ) ,  a < t < p, 
be the parametric representation of a closed, simple, piecewise-smooth curve; 
let C be smooth at t = a: (and hence at t = p, which maps on to the same 6 , ~ ) .  
We may define y( t )  by (3.2), by requiring its jumps at the corners of C to  have 
magnitude < IT, and by requiring it to be continuous elsewhere. Then 

d P )  - d a )  = Ifr 277 
according as t increasing corresponds to the clockwise or anticlockwise direction 
around C. [For, given E > 0, we can construe: a polygon whose points and whose 
y~ depart from those of C by less than E ;  and, for a polygon with interior angles yk 
at its n vertices, the increase in q at a vertex is IT - yk  for the clockwise direction, 
while Cy, = (n - 2) IT.] 

Now form the union of ro and the segment (say E )  of the y-axis between 
y(h,) and ?(Al); this union is a closed, simple, piecewise-smooth curve. Accord- 
ingly, identifying t = a: with h = &+, we can relate y(h , - )  to the final angle 
y(Ao + ) f  IT by way of the straight path E,  instead of relating it to the initial 
angle y (h ,  + ) by way of the possibly tortuous path Pa. Any possibility other than 
(3.6) then leads to a contradiction. 
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